NAME

FOM 3

Final Exam Review

1st period: January 11 AM
2nd period: January 11 PM
3rd period: January 14 AM
2+2OUANATIHTEST

USEGMIGUMTOBIUSTDUGASE

Unit 1 Bare Necessities - Quadratics and Piecewise

Simplifying Radicals

1. If the number is negative, cross out the negative and bring out i.
2. Make factor tree.

3. Cross out a group and bring that number out of the radical (no group = stays in)
4. Multiply together numbers that came out of the radical and numbers that stayed in

All Together!!

EX1. $\sqrt{20}$
EX2. $\sqrt{-600}$

You Try!!

1. $\sqrt{1500}$
2. $\sqrt{-12}$
3. $\sqrt{405}$
4. $\sqrt{-80}$
5. $\sqrt{-76}$
6. $\sqrt{-7}$

Parallelograms \& Properties

- Opposite sides are congruent
- Opposite angles are congruent
- Consecutive angles are supplementary
- Diagonals bisect each other

All Together!!

EX 8. Find x given $R P=48$ and $R T=3 x-5$

EX 9. Solve for x

13. Find the $m<U$

15. Solve for TE given $T E=4+2 x$ and $E V=4 x-4$

Parallel Line Relationships

1. Identify the type of angles
2. Decide if they are congruent or supplementary
3. Solve the equation

All Together!!

EX6.

EX7.

You Try!!

9.

11.

10.

Solving Quadratic Equations Using the Quadratic Formula

$a x^{2}+b x+c=0$
**must be equal to zero
**helpful if a is positive

All Together!!

You Try!!

7. $8 a^{2}+6 a=-5$
8. $2 k^{2}-7 k-13=-10$
9. $2 x^{2}-3 x-5=0$
10. $h^{2}=9 h-20$
11. $2 x^{2}+4 x+3=0$
12. $9 b^{2}-6 b-3=8$

Vertex of a Parabola

1. Find x by using the formula $x=\frac{-b}{2 a}$.
2. Substitute x value in to find y value.
3. Write as a point.

All Together!!

EX6. $y=2 x^{2}+10 x-4$

You Try!!

13. $y=3 x^{2}-12 x+5$
14. $y=-2 x^{2}-16 x-35$
15. $y=-x^{2}+2 x+3$
16. $y=3 x^{2}+24 x+49$

Volume

1. Find the area of the base
2. Multiply by the height
3. Be sure to a label of cubed units!
** The volume of cones and pyramids must be divided by 3 (same as multiplied by $\frac{1}{3}$)
** Volume of a sphere has a special formula $V=\frac{4}{3} \pi r^{3}$

All Together!!

EX4.

EX5.

You Try!!

6.

7.

8.

Unit 8 Bare Necessities - Geometry

Surface Area

1. Find the area of the different shapes that make up the 3D figure.
2. Add the areas of all faces
3. Be sure to include a label of squared units!

${ }^{* *}$ Surface area of a sphere has a special formula $S A=4 \pi r^{2}$

All Together!!

EX1.

EX2.

EX3.

You Try!!

1.

2.

3.

4.

Evaluate Piecewise Functions

1. Use the inequalities to determine which piece to use.
2. Substitute in the number for x.

All Together!!

$$
f(x)=\left\{\begin{array}{c}
3 x-9, x<-3 \\
8 x^{2}, x \geq-3
\end{array}\right.
$$

EX7. $f(8)$
EX8. $f(-10)$
EX9. $f(-3)$
EX10. $f(-1)$

You Try!!

$$
g(x)=\left\{\begin{array}{c}
9-x, x \leq 2 \\
3 x+1, x>2
\end{array}\right.
$$

17. $g(1)$
18. $g(9)$
19. $g(2)$
20. $g(0)$
21. $g(-3)$
22. $g(17)$

Unit 2 Bare Necessities - Polynomials Operations with Polynomials

To add or subtract polynomials:

1. Put a 1 in front of second parenthesis and distribute it
2. Combine any like terms (do not change the exponents!!)

To multiply polynomials:

1. Distribute or FOIL as needed
2. Multiply the numbers in front and add the exponents
3. Combine any like terms (do not change the exponents!!)

All Together!!

EX1. $\left(7 x^{4}-7 x^{2}-8\right)+\left(7 x-8-8 x^{4}\right)$
EX2. $\left(p^{4}-4 p^{3}-8 p\right)-\left(-7 p^{4}-5 p^{3}+7 p\right)$

EX3. $(6 x-3)(2 x+5)$

You Try!!

1. $5 x y^{2}\left(4 x^{2} y+8 x y-2 y\right)$
2. $(5 y-7)(2 y+2)$
3. $\left(5 h^{3}-2 h+3\right)-\left(8 h^{3}+6 h^{2}-h-2\right)$
4. $(f+3)\left(f^{2}+2 f-6\right)$
5. $(3 k+7)^{2}$
6. $\left(7 g^{3}+4 g^{2}-9 g\right)+\left(8 g-6 g^{3}-4 g^{2}\right)$

Equations of Sine and Cosine

$y=a \cdot \sin (b x)+d$	amplitude $=\|a\|$
	period $=\frac{2 \pi}{b}$
$y=a \cdot \cos (b x)+d$	vertical shift $=+\mathrm{d}$ up, -d down

All Together!!

EX10. $y=-3 \cos 6 x+2$

You Try!!

20. $y=\sin 5 x-3$
21. $y=2 \cos x$
22. $y=-3 \sin \frac{1}{4} x+10$
23. $y=-5 \sin 4 x-3$

Exact Values of Trig Ratios

cosine $=x$-coordinate \quad sine $=y$-coordinate \quad tangent $=y \div x$

All together!!
EX7. $\sin 300^{\circ}$
EX8. $\cos -225^{\circ}$
EX9. $\tan 120^{\circ}$

You try!!
14. $\cos 210^{\circ}$
15. $\sin 765^{\circ}$
16. $\tan 240^{\circ}$
17. $\sin 180^{\circ}$
18. $\tan -225^{\circ}$
19. $\cos 300^{\circ}$

Synthetic Division

1. Make sure terms are in order. Make sure you have every term down from the highest power.
2. Set binomial you are dividing by equal to zero and solve for x. That number goes in the box.
3. Line up coefficients next to box
4. Add to get below the line.
5. Multiply with box to get back above the line.
6. Answer starts one power less than highest power in original problem.

All Together!!

EX5. $\left(3 x^{2}+4 x-12\right) \div(x+5)$
EX6. $\left(x^{4}-3 x^{2}+2 x+12\right) \div(x+1)$

You Try!!

7. $\left(x^{2}-5 x-12\right) \div(x-3)$
8. $\left(6 x^{4}+4 x^{3}-x^{2}+9\right) \div(x+1)$
9. $\left(-10 x^{2}+3 x^{3}+x-5\right) \div(x+4)$
10. $\left(x^{3}-3 x^{2}-13 x-30\right) \div(x-6)$

Zeroes, Multiplicity, and End Behavior

All Together!!
EX4.

You Try!!
11.

12.

13.

Convert Between Radians and Degrees

${ }^{* *}$ conversion factor: $180^{\circ}=\pi$ radians
All Together!!
EX3. Convert to degrees: $\frac{3 \pi}{8}$
EX4. Convert to radians: 400°

You Try!!

Convert to degrees.
5. $\frac{\pi}{9}$
6. $\frac{7 \pi}{3}$
7. 5π

Convert to radians.
8. 125°
9. 90°
10. 390°

Coterminal Angles

** $+/-360^{\circ}$ if in degrees

All Together!!

EX5. 1270°
EX6. $-\frac{12 \pi}{5}$

You Try!!

Give the coterminal angle between 0° and 360°.
11. -620°
12. $\frac{9 \pi}{4}$
13. 4000°

All Together!!
EX1.

EX2.

You Try!!
1.

3.

2.

4.

Extrema, Intervals for Increasing and Decreasing

Extrema are "turning points"
Intervals are named using the x-values only! Ignore the y-values!

- increasing - on a path going up
- decreasing - on a path going down

All Together!!

EX5.

You Try!!

14.

16.

Unit 3 Bare Necessities - Factoring
 Factor Using GCF

Find the largest term that divides every term in the polynomial and divide it out.
**Always look for it before doing anything else on factoring problem!

All Together!!
EX1. $45 x^{2}-25 x$
EX2. $-18 a^{5} b^{4} c+12 a^{4} b^{2} c^{2}-30 a^{3} b^{2}$

You Try!!

1. $21 w^{3}-35 w$
2. $-24 x^{6}-4 x^{4}+12 x^{3}+8 x^{2}$

Factor Difference of Squares

$a^{2}-b^{2}=(a+b)(a-b)$

All Together!!

EX3. $h^{2}-100$

You Try!!

3. $9 x^{2}-64$
4. $2 x^{2}-50$

Equation of a Circle

$(x-h)^{2}+(y-k)^{2}=r^{2} \quad$ center: (h, k)
radius: r

All Together!!

EX5. $(x-3)^{2}+(y-5)^{2}=81$
EX6. $x^{2}+y^{2}+12 x-4 y+31=0$

You Try!!

Determine the center and radius.
13. $(x+4)^{2}+(y-8)^{2}=144$
14. $x^{2}+(y+7)^{2}=1$
15. $x^{2}+y^{2}+16 x+2 y+16=0$
16. $x^{2}+y^{2}-6 x+8 y-11=0$
outside \bullet whole length $=$ outside \cdot whole length

All together!!

You try!!

7.

8.

9.

10.

11.

12.

Factor Trinomials

- first term times last term
- find numbers that multiply to that but also add to middle term
- replace middle term with numbers
- split in half and factor GCF from both sides
- what is in parentheses must match, that is one factor and GCFs make other factor

All Together!!

EX 3. $g^{2}+5 g-24$

EX4. $6 x^{2}-19 x+10$

You Try!!

5. $x^{2}-x-56$
6. $3 x^{2}+4 x-15$
7. $n^{2}+n-42$
8. $2 g^{2}-10 g-72$

Zeroes From Factors

To find zeroes from factors:

- set factors equal to zero and solve for x
- exponent of the factor is the multiplicity

To write factors from zeroes:

- work backwards to make factor equal to zero
- multiplicity is the exponent of the factor

All together!!

EX5. Find the zeroes of:
$f(x)=3 x(x-5)^{4}(x+2)$

EX6. Write the polynomial given zeroes:
$x=5$ mult: $3, x=-1$ mult:9, $x=2$ mult: 1

You try!!

Find the zeroes and their multiplicities:
9. $f(x)=(x+8)^{2}(x-5)^{2}(x+1)$
10. $f(x)=4(x+3)(2 x-1)$
11. $f(x)=(x-300)^{95}$
12. $f(x)=-2 x^{2}(x+5)(x+2)^{4}$

Write the polynomial using the given zeroes:
13. $x=-9$ mult: $3, x=2$ mult: 2
14. $x=0$ mult: $5, x=-1$ mult: $1, x=-7$ mult: 1

Unit 6 Bare Necessities - Circles

Arcs and Angles of Circles
angle $=\frac{\text { big arc - little arc }}{2}$

$$
\text { angle }=\frac{\text { arc }+ \text { other arc }}{2}
$$

All together!!

EX1.

EX2.

You try!!
1.

2.

3.

4.

5.

6.

Asymptotes and Holes of Rational Functions

Factor, then cancel.
Look ONLY at the denominator!

- Factors that cancel create holes
- Factors that did not cancel create vertical asymptotes

Horizontal asymptotes:

- look for highest exponent in whole problem
- divide those terms

All Together!!

EX4. $f(x)=\frac{2 x^{2}-x-15}{x^{2}+x-12}=\frac{(x-3)(2 x+5)}{(x+4)(x-3)}$
EX5. $f(x)=\frac{x+7}{x^{2}-10 x+21}=\frac{x+7}{(x-7)(x-3)}$

You Try!!

Determine the vertical asymptotes, holes, domain, and horizontal asymptotes.
7. $f(x)=\frac{2 x^{2}-9 x-5}{x^{2}+x-30}=\frac{(2 x+1)(x-5)}{(x+6)(x-5)}$
8. $f(x)=\frac{x^{2}+5 x+4}{x+4}=\frac{(x+4)(x+1)}{x+4}$
9. $f(x)=\frac{5 x^{2}-27 x-18}{5 x^{2}+43 x+24}=\frac{(x-6)(5 x+3)}{(x+8)(5 x+3)}$
10. $f(x)=\frac{x+6}{x^{2}+8 x-9}=\frac{x+6}{(x-1)(x+9)}$

Unit 4 Bare Necessities - Exponents and Logarithms Rewriting Exponents and Logarithms

exponential form: $3^{2}=9$

Solving Logarithmic Equations

1. apply a property if needed to write as one log
2. convert to exponential form
3. solve for x
logarithmic form: $\log _{3} 9=2$
All Together!!
EX1. Rewrite $6^{3}=216$ in logarithmic form.

You Try!!

Rewrite in logarithmic form.

1. $3^{5}=243$
2. $8^{4}=4096$

EX2. Rewrite $\log _{2} 16=4$ in exponential form.

Rewrite in exponential form.
3. $\log _{5} 125=3$
4. $\log 100=2$

Properties
${ }^{*} \log _{b} M+\log _{b} N=\log _{b} M \cdot N$
${ }^{*} \log _{b} M-\log _{b} N=\log _{b} \frac{M}{N}$
*If $\log _{b} M=\log _{b} N$, then $M=N$

All Together!!

EX4. $\log 6 x-\log 3=2$

You Try!!
5. $\log _{4} x=3$
6. $\log _{3} 8+\log _{3}(x-2)=6$
7. $\log _{9}(x+20)=\log _{9}(3 x-4)$
8. $\log _{7}(3 x+6)=4$

Solving Exponential Equations

1. Take the natural log of both sides
2. bring exponent down in front of the log
3. solve for x

All Together!!

$$
\text { EX5. } 5^{x}=37
$$

EX6. $9^{7 x-2}=3$

You Try!!
9. $e^{6 x}=2.9$
10. $1.54^{x}=28$
11. $4^{x+3}=22$
12. $3.8^{2 x-6}=19.1$

Dividing Rational Expressions

Keep, change, flip. Factor, then cancel.
All Together!!

EX3. $\frac{x^{2}+9 x+18}{x^{2}-9} \div \frac{x+6}{x-6}$

You Try!!
5. $\frac{x^{2}+2 x-3}{x^{2}-5 x+4} \div \frac{x^{2}-9}{x^{2}-2 x-8}$
6. $\frac{3 x-9}{x^{2}-x-20} \div \frac{x^{2}+2 x-15}{x^{2}-25}$

Factor, then cancel. **Remember, the factors can be in either fraction!!

All Together!!

EX2. $\frac{x}{x+3} \cdot \frac{x^{2}-5 x-24}{x^{2}-5 x}$

You Try!!

3. $\frac{x+3}{3 x^{2}+4 x-15} \cdot \frac{4 x^{2}-9}{2 x+3}$
4. $\frac{x-3}{x^{2}-4} \cdot \frac{x+2}{x^{2}-6 x+9}$

Exponential Growth and Decay

$$
\begin{array}{ll}
y=a(b)^{t} & \text { a: initial amount } \\
& \text { b: growth or decay factor }(1+r \text { for growth; } 1-r \text { for decay }) \\
& \text { t: number of time periods that pass }
\end{array}
$$

All Together!!

EX7. Ryan's motorcycle is now worth $\$ 2500$. It has decreased in value 12% each year since it was purchased. If he bought it four years ago, what did it cost new?

You Try!!

13. According to a computer model, a population of salmon will decline each year by 6\%. In 2015, there are currently 3000 salmon in the population. How many salmon are predicted to be in that population in 2025 ?
14. The half-life of a radioactive element is the time it takes for 50% of its atoms to decay. About how many grams of a radioactive element would remain from a sample of 20 g after 3 half-lives?
15. Movie tickets now average $\$ 9.75$ a ticket, but are increasing 15% per year. How much will they cost 5 years from now?

Compound Interest

$$
\begin{array}{cl}
A=P\left(1+\frac{r}{n}\right)^{n t} & \mathrm{P}: \text { initial amount of money } \\
& \mathrm{r} \text { interest rate (as a decimal) } \\
\text { Compounded continuously: } & \mathrm{n}: \text { number of times compounded in a year } \\
A=P e^{r t} & \mathrm{t}: \text { time (in years!) }
\end{array}
$$

All Together!!

EX8. What amount will an account have after 18 years if $\$ 250$ is invested at 5% interest compounded semiannually?

You Try!!

16. What amount invested at 9% interest compounded continuously for 4 years will yield $\$ 590$?
17. If $\$ 800$ is invested at 7% interest compounded continuously, how long will it take before the amount is \$1100?
18. Determine the amount that must be invested at 4.5% interest compounded quarterly, so that $\$ 300,000$ will be available for retirement in 15 years.
19. How long does it take $\$ 800$ to double if it is invested at 5% interest compounded monthly?

Simplifying Rational Expressions

Factor, then cancel.

All Together!!

EX1. $\frac{x^{2}-16}{x^{2}+3 x-28}$

You Try!!

1. $\frac{x^{2}-11 x+18}{x^{2}+2 x-8}$
2. $\frac{2 x^{2}+10 x-48}{8 x+64}$
