FOM 3 Final Exam Review

1st period: January 11 AM 2nd period: January 11 PM 3rd period: January 14 AM

Unit 1 Bare Necessities - Quadratics and Piecewise

Simplifying Radicals

- 1. If the number is negative, cross out the negative and bring out *i*.
- 2. Make factor tree.
- 3. Cross out a group and bring that number out of the radical (no group = stays in)
- 4. Multiply together numbers that came out of the radical and numbers that stayed in

All Together!!

EX1. $\sqrt{20}$

You Try!!

1. $\sqrt{1500}$

3. $\sqrt{405}$

4. $\sqrt{-80}$

6. $\sqrt{-7}$

5. √-76

EX2. $\sqrt{-600}$

2. $\sqrt{-12}$

Parallelograms & Properties

- Opposite sides are congruent
- Opposite angles are congruent
- Consecutive angles are supplementary
- Diagonals bisect each other

All Together!!

EX 8. Find x given RP = 48 and RT = 3x - 5

EX 9. Solve for x

You Try!!

12. Solve for x.

13. Find the m < U

15. Solve for TE given TE = 4 + 2x and EV = 4x - 4

14. Solve for x.

Parallel Line Relationships

- 1. Identify the type of angles
- 2. Decide if they are congruent or supplementary
- 3. Solve the equation

All Together!!

You Try!!

Solving Quadratic Equations Using the Quadratic Formula

$$ax^{2} + bx + c = 0$$
**must be equal to zero
**helpful if a is positive
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$
All Together!!

EX3. $m^2 - 5m - 14 = 0$ **EX4.** $x^2 - 4x = -9$ **EX5.** $8n^2 - 18 = 4n$

You Try!!

7. $8a^2 + 6a = -5$ 8. $2k^2 - 7k - 13 = -10$ 9. $2x^2 - 3x - 5 = 0$

10. $h^2 = 9h - 20$ 11. $2x^2 + 4x + 3 = 0$ 12. $9b^2 - 6b - 3 = 8$

Vertex of a Parabola

- 1. Find x by using the formula $x = \frac{-b}{2a}$.
- 2. Substitute x value in to find y value.
- 3. Write as a point.

All Together!!

EX6. $y = 2x^2 + 10x - 4$

You Try!!

13. $y = 3x^2 - 12x + 5$ **14.** $y = -x^2 + 2x + 3$

15. $y = -2x^2 - 16x - 35$

16. $y = 3x^2 + 24x + 49$

Volume

- 1. Find the area of the base
- 2. Multiply by the height
- 3. Be sure to a label of cubed units!
- ** The volume of cones and pyramids must be divided by 3 (same as multiplied by $\frac{1}{3}$)
- ** Volume of a sphere has a special formula $V = \frac{4}{3}\pi r^3$

All Together!!

You Try!!

8.

Unit 8 Bare Necessities - Geometry

Surface Area

- 1. Find the area of the different shapes that make up the 3D figure.
- 2. Add the areas of all faces
- 3. Be sure to include a label of squared units!

**Surface area of a sphere has a special formula $SA = 4\pi r^2$

All Together!!

You Try!!

1.

Evaluate Piecewise Functions

- 1. Use the inequalities to determine which piece to use.
- 2. Substitute in the number for x.

All Together!!

$$f(x) = \begin{cases} 3x - 9, x < -3 \\ 8x^2, x \ge -3 \end{cases}$$

EX7. *f*(8)

EX8. f(-10) **EX9.** f(-3)

EX10. *f*(-1)

You Try!!

$$g(x) = \begin{cases} 9-x, x \leq 2\\ 3x+1, x > 2 \end{cases}$$

17. *g*(1)

18. g(9)

19. *g*(2)

20. *g*(0)

21. *g*(-3)

22. *g*(17)

Unit 2 Bare Necessities - Polynomials

Operations with Polynomials

To add or subtract polynomials:

- 1. Put a 1 in front of second parenthesis and distribute it
- 2. Combine any like terms (do not change the exponents!!)

To multiply polynomials:

- 1. Distribute or FOIL as needed
- 2. Multiply the numbers in front and add the exponents
- 3. Combine any like terms (do not change the exponents!!)

All Together!!

EX1. $(7x^4 - 7x^2 - 8) + (7x - 8 - 8x^4)$

EX2. $(p^4 - 4p^3 - 8p) - (-7p^4 - 5p^3 + 7p)$

EX3. (6x-3)(2x+5)

You Try!!

1. $5xy^2(4x^2y + 8xy - 2y)$

2. (5y-7)(2y+2)

3.
$$(5h^3 - 2h + 3) - (8h^3 + 6h^2 - h - 2)$$
 4. $(f + 3)(f^2 + 2f - 6)$

5. $(3k+7)^2$ 6. $(7g^3+4g^2-9g)+(8g-6g^3-4g^2)$

Equations of Sine and Cosine

$y = a \cdot sin(bx) + d$	amplitude = $ a $
	period = $\frac{2\pi}{b}$
$y = a \cdot \cos(bx) + d$	vertical shift = +d up, −d down

All Together!!

EX10. $y = -3\cos 6x + 2$

You Try!!

20. y = sin5x - 3

21. $y = -3sin\frac{1}{4}x + 10$

22. *y* = 2*cosx*

23. y = -5sin4x - 3

Exact Values of Trig Ratios

cosine = x-coordinate

sine = y-coordinate

tangent = $y \div x$

All together!!

EX7. *sin*300^o

EX8. $cos - 225^{\circ}$

You try!!

14. *cos*210^{*o*}

15. *sin*765[°]

16. *tan*240^o

Synthetic Division

- 1. Make sure terms are in order. Make sure you have every term down from the highest power.
- 2. Set binomial you are dividing by equal to zero and solve for x. That number goes in the box.
- 3. Line up coefficients next to box
- 4. Add to get below the line.
- 5. Multiply with box to get back above the line.
- 6. Answer starts one power less than highest power in original problem.

All Together!!

EX5. $(3x^2 + 4x - 12) \div (x + 5)$

EX6. $(x^4 - 3x^2 + 2x + 12) \div (x + 1)$

You Try!! 7. $(x^2 - 5x - 12) \div (x - 3)$ 8. $(6x^4 + 4x^3 - x^2 + 9) \div (x + 1)$

9. $(-10x^2 + 3x^3 + x - 5) \div (x + 4)$

10. $(x^3 - 3x^2 - 13x - 30) \div (x - 6)$

Zeroes, Multiplicity, and End Behavior

End Behavio	r:		Zeroes and Multiplicity:
	even exponent	odd exponent	
positive coefficient			
negative coefficient			
L	1	1	

All Together!! EX4.

You Try!!

Convert Between Radians and Degrees

**conversion factor: $180^{\circ} = \pi$ radians

All Together!!

EX3.	Convert to degrees:	$\frac{3\pi}{8}$	EX4.	Convert to radians: 400°
------	---------------------	------------------	------	--------------------------

You Try!!

Convert to degrees.		
5. $\frac{\pi}{2}$	6. $\frac{7\pi}{2}$	7. 5π
- 9	3	
Convert to radians.		
8. 125°	9. 90°	10. 390°

Coterminal Angles

** +/- 360° if in degrees

All Together!!

EX5. 1270°

EX6. $-\frac{12\pi}{5}$

You Try!!

Give the coterminal angle betw	veen 0^o and 360^o .	
11. −620°	12. $\frac{9\pi}{4}$	13. 4000°

You Try!!

1.

Extrema, Intervals for Increasing and Decreasing

Extrema are "turning points"

Intervals are named using the x-values only! Ignore the y-values!

- increasing on a path going up
- decreasing on a path going down

All Together!!

You Try!! 14.

....

2

4

15.

Unit 3 Bare Necessities - Factoring Factor Using GCF

Find the largest term that divides every term in the polynomial and divide it out. **Always look for it before doing anything else on factoring problem!

All Together!!

EX1. $45x^2 - 25x$

EX2.
$$-18a^5b^4c + 12a^4b^2c^2 - 30a^3b^2$$

You Try!!

1. $21w^3 - 35w$

2. $-24x^6 - 4x^4 + 12x^3 + 8x^2$

Factor Difference of Squares

 $a^2 - b^2 = (a+b)(a-b)$

All Together!!

EX3. $h^2 - 100$

You Try!!

3. $9x^2 - 64$

4. $2x^2 - 50$

Equation of a Circle $(x-h)^2 + (y-k)^2 = r^2$ ce

center: (h, k)radius: r

All Together!!

EX5.
$$(x-3)^2 + (y-5)^2 = 81$$

EX6. $x^2 + y^2 + 12x - 4y + 31 = 0$

You Try!! Determine the center and radius.

13.
$$(x+4)^2 + (y-8)^2 = 144$$

14. $x^2 + (y+7)^2 = 1$

15.
$$x^2 + y^2 + 16x + 2y + 16 = 0$$

16. $x^2 + y^2 - 6x + 8y - 11 = 0$

Lengths with Circles

outside • whole length = outside • whole length

one piece • other = one piece • other

All together!!

12.

You try!!

8.

Factor Trinomials

- first term times last term
- find numbers that multiply to that but also add to middle term
- replace middle term with numbers
- split in half and factor GCF from both sides
- what is in parentheses must match, that is one factor and GCFs make other factor

All Together!!

EX 3. $g^2 + 5g - 24$

EX4. $6x^2 - 19x + 10$

You Try!!

5. $x^2 - x - 56$

6. $3x^2 + 4x - 15$

7. $n^2 + n - 42$

8. $2g^2 - 10g - 72$

Zeroes From Factors

To find zeroes from factors:

- set factors equal to zero and solve for x
- exponent of the factor is the multiplicity

To write factors from zeroes:

- work backwards to make factor equal to zero
- multiplicity is the exponent of the factor

All together!!

EX5. Find the zeroes of:	EX6. Write the polynomial given zeroes:
$f(x) = 3x(x-5)^4(x+2)$	x = 5 mult: 3, $x = -1$ mult:9, $x = 2$ mult: 1

You try!!

Find the zeroes and their multiplicities:

9.
$$f(x) = (x+8)^2(x-5)^2(x+1)$$

10. $f(x) = 4(x+3)(2x-1)$

11.
$$f(x) = (x - 300)^{95}$$

12. $f(x) = -2x^2(x + 5)(x + 2)^4$

Write the polynomial using the given zeroes:

Unit 6 Bare Necessities - Circles

Arcs and Angles of Circles $angle = \frac{big arc - little arc}{2}$

$$angle = \frac{arc + other arc}{2}$$

All together!!

You try!!

4.

С В X° 72° 99° A

5.

Asymptotes and Holes of Rational Functions

Factor, then cancel.

Look ONLY at the denominator!

- Factors that cancel create holes
- Factors that did not cancel create vertical asymptotes

Horizontal asymptotes:

- look for highest exponent in whole problem
- divide those terms

All Together!!

EX4.
$$f(x) = \frac{2x^2 - x - 15}{x^2 + x - 12} = \frac{(x - 3)(2x + 5)}{(x + 4)(x - 3)}$$
 EX5. $f(x) = \frac{x + 7}{x^2 - 10x + 21} = \frac{x + 7}{(x - 7)(x - 3)}$

You Try!!

Determine the vertical asymptotes, holes, domain, and horizontal asymptotes.

7.
$$f(x) = \frac{2x^2 - 9x - 5}{x^2 + x - 30} = \frac{(2x+1)(x-5)}{(x+6)(x-5)}$$
 8. $f(x) = \frac{x^2 + 5x + 4}{x+4} = \frac{(x+4)(x+1)}{x+4}$

9.
$$f(x) = \frac{5x^2 - 27x - 18}{5x^2 + 43x + 24} = \frac{(x-6)(5x+3)}{(x+8)(5x+3)}$$
 10. $f(x) = \frac{x+6}{x^2 + 8x-9} = \frac{x+6}{(x-1)(x+9)}$

Unit 4 Bare Necessities - Exponents and Logarithms Rewriting Exponents and Logarithms

logarithmic form: $log_3 9 = 2$

All Together!!

EX1. Rewrite $6^3 = 216$ in logarithmic form.

exponential form:
$$3^2 = 9$$

EX2. Rewrite $log_2 16 = 4$ in exponential form.

You Try!!

Rewrite in logarithmic form. 1. $3^5 = 243$ 2. $8^4 = 4096$

Rewrite in exponential form. 3. $log_5 125 = 3$

4. log 100 = 2

Solving Logarithmic Equations

- 1. apply a property if needed to write as one log
- 2. convert to exponential form
- 3. solve for x

All Together!!

EX3. $log_5(3x+11) = 4$

<u>Properties</u> * $log_b M + log_b N = log_b M \cdot N$ * $log_b M - log_b N = log_b \frac{M}{N}$ * If $log_b M = log_b N$, then M = N

EX4. log 6x - log 3 = 2

You Try!!

5. $log_4 x = 3$

6. $log_3 8 + log_3 (x-2) = 6$

Solving Exponential Equations

- 1. Take the natural log of both sides
- 2. bring exponent down in front of the log
- 3. solve for x

All Together!!

EX5. $5^x = 37$ **EX6.** $9^{7x-2} = 3$

You Try!!

9. $e^{6x} = 2.9$ **10.** $1.54^x = 28$

11. $4^{x+3} = 22$

12. $3.8^{2x-6} = 19.1$

Dividing Rational Expressions

Keep, change, flip. Factor, then cancel.

All Together!!

EX3.
$$\frac{x^2+9x+18}{x^2-9} \div \frac{x+6}{x-6}$$

You Try!!

5.
$$\frac{x^2+2x-3}{x^2-5x+4} \div \frac{x^2-9}{x^2-2x-8}$$

6.
$$\frac{3x-9}{x^2-x-20} \div \frac{x^2+2x-15}{x^2-25}$$

Multiplying Rational Expressions

Factor, then cancel. **Remember, the factors can be in either fraction!!

All Together!!

EX2.
$$\frac{x}{x+3} \cdot \frac{x^2-5x-24}{x^2-5x}$$

You Try!!

3.
$$\frac{x+3}{3x^2+4x-15} \cdot \frac{4x^2-9}{2x+3}$$

4.
$$\frac{x-3}{x^2-4} \cdot \frac{x+2}{x^2-6x+9}$$

Exponential Growth and Decay

y: final amount of whatever you are measuring

$$y = a(b)^t$$

a: initial amount b: growth or decay factor (1 + r for growth; 1 - r for decay) t: number of time periods that pass

All Together!!

EX7. Ryan's motorcycle is now worth \$2500. It has decreased in value 12% each year since it was purchased. If he bought it four years ago, what did it cost new?

You Try!!

13. According to a computer model, a population of salmon will decline each year by 6%. In 2015, there are currently 3000 salmon in the population. How many salmon are predicted to be in that population in 2025?

14. The half-life of a radioactive element is the time it takes for 50% of its atoms to decay. About how many grams of a radioactive element would remain from a sample of 20g after 3 half-lives?

15. Movie tickets now average \$9.75 a ticket, but are increasing 15% per year. How much will they cost 5 years from now?

Compound Interest

Compounded over time:

A: final amount of money

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Compounded continuously: $A = P e^{rt}$

P: initial amount of moneyr: interest rate (as a decimal)n: number of times compounded in a yeart: time (in years!)

All Together!!

EX8. What amount will an account have after 18 years if \$250 is invested at 5% interest compounded semiannually?

You Try!!

16. What amount invested at 9% interest compounded continuously for 4 years will yield \$590?

17. If \$800 is invested at 7% interest compounded continuously, how long will it take before the amount is \$1100?

18. Determine the amount that must be invested at 4.5% interest compounded quarterly, so that \$300,000 will be available for retirement in 15 years.

19. How long does it take \$800 to double if it is invested at 5% interest compounded monthly?

Unit 5 Bare Necessities - Rational Expressions

Simplifying Rational Expressions

Factor, then cancel.

All Together!!

EX1.
$$\frac{x^2 - 16}{x^2 + 3x - 28}$$

You Try!!

1.
$$\frac{x^2 - 11x + 18}{x^2 + 2x - 8}$$

2.
$$\frac{2x^2 + 10x - 48}{8x + 64}$$