Name \qquad
Math 3 Unit 6：Circles

S＠MARES AND TRURNGLES RGRE⿷匚⿳丨コ丨心

C口RくL區S 周區 POUNTMESS

		March 27 －Arc length and area of sector HW： 6.1	March 28 • Equation of a circle	March 29 No School－ Teacher Work Day
April 1 6.2				

6.1 - Arc Length and Area of a Sector

Find each requested measurement.

1. radius $=7 \mathrm{ft}$, central angle $=18^{\circ}$

Find arc length.
3. central angles $=130^{\circ}$, arc length $=14 \mathrm{~cm}$ Find radius.
5. arc length $=8 \pi \mathrm{~cm}$, radius $=20 \mathrm{~cm}$ Find central angle.
7. area of sector $=17 \pi \mathrm{~cm}^{2}$, central angle $=75^{\circ}$ Find radius.
9. Find area of sector.

2. radius $=2$ in, central angle 240° Find area of sector.
4. area of sector $=116 \pi \mathrm{~cm}^{2}$, central angle $=110^{\circ}$ Find diameter.
6. radius $=2 \mathrm{~m}$, central angle $=103^{\circ}$

Find arc length.
8. circumference $=4 \pi$ in, central angle $=87^{\circ}$ Find area of sector.
10. Find arc length.

Fun With Factoring!

11. $2 x^{3}+6 x^{2}$
12. $x-4$
13. $3 x^{2}+13 x-10$

6.2 - Equation of a Circle

For \#1-4, determine the equation of a circle with the given center and radius.

1. center: $(-7,2)$; radius $=5$ in
2. center: $(0,7)$; radius $=\sqrt{13} \mathrm{~km}$
3. center: $(-5,-6)$; radius $=3 \mathrm{ft}$
4. center: $(1,14)$; radius $=36 \mathrm{~cm}$
5. Find the equation of a circle with center point $(-1,4)$ and containing the point $(5,-4)$.

For \#6-9, determine the equation of a circle in standard form. Then determine the center and radius.
6. $x^{2}+y^{2}-10 x+8 y-56=0$
7. $x^{2}+y^{2}-14 x+4 y+35=0$
8. $x^{2}+y^{2}-2 x+6 y-3=0$
9. $x^{2}+y^{2}+12 x-45=0$

Fun with Factoring

10. $6 x^{2}-5 x-25$
11. $4 x^{2}-81$
12. $3 x-5$

6.3 - Inscribed Angles

Find the value of each variable. For each circle, the dot represents the center.
1.

2.

3.

Find each indicated measure for $\odot M$.
10. $m \angle B$
11. $m \angle C$
12. $m \widehat{B C}$
13. $m \widehat{A C}$
7.

6.

9.

8.

5.

OMG - No Fun with Factoring today!!!! You're welcome.

6.4-Chords

Solve for the variable.
1.

2.

3.

4.

5.

7.

8.

Fun With Factoring!
9. $7 x^{2}-28$
10. $8 x^{2}+10 x-7$
11. $3 x-9$

6.5 - Tangents

Determine if line $A B$ is tangent to the circle.
1.

2.

3.

Determine the perimeter of each polygon. Assume lines that appears tangent is tangent.
4.

5.

6.

Find the indicated side and angle measures. Assume lines that appears tangent is tangent.
7.

8.

9.

Fun with Factoring
10. $25 x^{2}-1$
11. $2 x^{3}+2 x^{2}-4 x$
12. $2 x^{2}-7 x-15$

6.6-Angles Formed By Secants, Tangents, and Chords

 Solve for x.1.

2.

3.

4.

5.

6.

7.

8.

9.

Fun With Factoring!
10. $-3 x^{2}-21 x-30$
11. $5 x^{2}+45$
12. $x^{2}+3 x+2$

6.7 - Lengths with Secants, Tangents, and Chords

Determine the value of x.

1.

2.

3.

4.

5.

7.

8.

9.

Fun with Factoring!
10. $3 x^{2}+26 x+16$
11. $6 x+12$
12. $4 x^{2}-15$

